
Serial Communication Protocol

User's manual

Serial Communication Protocol

General information

This guide is designed to provide the most complete and exhaustive information
on the serial communication protocol which has been implemented in the most
advanced units of Lika Electronic's Posicontrol series. LECOM protocol (DIN ISO
1745) is a common standard for drive applications. It is intended for data
exchange between one or more bus devices (Slave) and a host device (Master) in
both RS-232 and RS- 485 serial communication interfaces. Information on
setting the desired baud rate and data format as well as the pin-out of the data
connector are clearly described in the specific “User's manual” of the unit you
have to refer to.

Table of contents

1 – Unit address
2 – Serial Access Codes
3 – Reading from registers
4 – Writing to registers
5 – Sending the control commands
6 – Practical examples
7 - ASCII code chart

Serial Protocol I_E 1.0.odt 17 / 32

Serial Communication Protocol

1 – Unit address

This protocol supports unit addresses comprised between 11 and 99. They can
be set either via keypad / DIL switch or, as an alternative, via serial setup using a
personal computer / PLC. The unit addresses will be saved in the EEProm of the
unit. The addresses must NOT contain any “0“ because such numbers are
reserved for collective addressing for several units. The general address "00" is
intended for communication with all the units simultaneously linked to the
network. Addresses such as "10" or "20" will communicate with all the units
from 11 to 19 and from 21 to 29 respectively; and so on.
If the serial address of the unit should be unknown, you can run the SCAN
function from the TOOLS menu of the operator software to find it out.
Ex factory, all the units are set to the default address “11”.
Please note that any response delivered by a unit will be suppressed after access
by the general address “00” or a collective address such as “20”.

Serial Protocol I_E 1.0.odt 1 – Unit address 18 / 32

Serial Communication Protocol

2 – Serial Access Codes

They are the Register Codes. To serially access the registers of a unit, the
protocol uses either the Standard Addressing or the Extended Addressing,
depending on the total number of registers to access to.
Please refer to the “User's manual” of the relevant unit to find out the code
assignments and the mode of register addressing.
To clearly differentiate the serial access codes, the Extended Registers Codes are
always preceded by an exclamation mark “!”. Subcodes S1 and S2 must be
always set to “0” unless other values are expressly stated in the “User's manual”
of the unit.

Serial Protocol I_E 1.0.odt 2 – Serial Access Codes 19 / 32

Serial Communication Protocol

3 – Reading from registers

When you need to read data from the operational registers (RAM), then you
must send one of the following request strings (telegrams), depending on the
addressing mode.

3.1 Reading standard register codes

Standard register code

EOT AD1 AD2 C1 C2 ENQ

EOT = Control character CTRL D (Hex 04)

AD1 = Unit address, High byte
AD2 = Unit address, Low byte

C1 = Register code, High byte
C2 = Register code, Low byte

ENQ = Control character CTRL E (Hex 05)

For the complete list of valid register codes C1 and C2 please refer to the
parameters list in the “User's manual” of the relevant unit.

3.2 Reading extended register codes

Extended register code

EOT AD1 AD2 ! C1 C2 C3 C4 S1 S2 ENQ

EOT = Control character CTRL D (Hex 04)

AD1 = Unit address, High byte
AD2 = Unit address, Low byte

! = Exclamation mark (Hex 21)
C1 = Register code, High byte
C4 = Register code, Low byte
S1 = Subcode, High byte
S2 = Subcode, Low byte

ENQ = Control character CTRL E (Hex 05)

For the complete list of valid register codes C1 and C2 please refer to the
parameters list in the “User's manual” of the relevant unit.

Serial Protocol I_E 1.0.odt 3 – Reading from registers 20 / 32

Serial Communication Protocol

3.3 Addressing examples

3.3.1 Example 1: standard addressing

You need to read the register having code “03” from the unit with device
address “31”.

Unit address Register code

EOT
...

3 1 0 3 ENQ

Hex: 04 33 31 30 33 05

3.3.2 Example 2: extended addressing

You need to read the register having code “! 081A” from the unit with device
address “11”.

Unit
address

Register code

EOT
...

1 1 ! 0 8 1 A 0 0 ENQ

Hex: 04 31 31 21 30 38 31 41 30 30 05

Please note that figures 0-9 and characters A-F may be used for register
addressing; A-F characters are expressed in ASCII hexadecimal codes (from 41 to
46).

3.4 Response to a valid request

When a correct unit address and a valid register code are sent, the unit will
respond issuing one of the following telegrams (depending on the addressing
mode).

3.4.1 Response to a valid standard addressing

BCC

STX C1 C2 XXX ETX BCC

STX = Control character CTRL B (Hex 02)
XXX = Register code
ETX = Control character CTRL C (Hex 03)
BCC = Block check character

Serial Protocol I_E 1.0.odt 3 – Reading from registers 21 / 32

Serial Communication Protocol

3.4.2 Response to a valid extended addressing

BCC

STX ! C1 C2 C3 C4 S1 S2 XXX ETX BCC

STX = Control character CTRL B (Hex 02)
XXX = Register code
ETX = Control character CTRL C (Hex 03)
BCC = Block check character

The total number of data characters marked with XXX in the tables above
depends on the actual numeric value of the selected data register and may also
be preceded by a minus sign (“-”) in case of negative values. Preceding zeros are
always deleted and does not appear in the telegram.
The BCC block check character is generated by an Exclusive-OR function over all
characters between “C1” and “ETX” in the first “standard addressing” case,
between “!” and “ETX” in the second “extended addressing” case (“C1”, ”!”, “ETX”
included). For further information refer to the section “6.1.1 Transmission of the
data string” on page 26.

3.5 Response to an invalid request

When the request string contains an invalid or unknown register code (C1 – C4
or S1 – S2), then the response of unit will be as follows.

3.5.1 Response to an invalid standard addressing

STX C1 C2 EOT

3.5.2 Response to an invalid extended addressing

STX ! C1 C2 C3 C4 S1 S2 EOT

In case of other different errors in the request telegram, the unit will just
respond with “NAK” (Hex 15).

Serial Protocol I_E 1.0.odt 3 – Reading from registers 22 / 32

Serial Communication Protocol

4 – Writing to registers
When you need to enter new values in the registers via personal computer, then
you must send one of the following request telegrams, depending on the
addressing mode.

4.1 Writing standard register codes

BCC

EOT AD1 AD2 STX C1 C2 XXX ETX BCC

EOT = Control character CTRL D (Hex 04)
AD1 = Unit address, High byte
AD2 = Unit address, Low byte
STX = Control character CTRL B (Hex 02)
C1 = Register code, High byte
C2 = Register code, Low byte
XXX = New register data (ASCII code)
ETX = Control character CTRL C (Hex 03)
BCC = Block check character

4.2 Writing extended register codes

BCC

EOT AD1 AD2 STX ! C1 C2 C3 C4 S1 S2 XXX ETX BCC

EOT = Control character CTRL D (Hex 04)
AD1 = Unit address, High byte
AD2 = Unit address, Low byte
! = Exclamation mark (Hex 21)
STX = Control character CTRL B (Hex 02)
C1 = Register code, High byte
C4 = Register code, Low byte
S1 = Subcode, High byte
S2 = Subcode, Low byte
XXX = New register data (ASCII code)
ETX = Control character CTRL C (Hex 03)
BCC = Block check character

The data string marked with XXX in the tables above can have any number of
characters and may also contain preceding zeros or a negative sign.
The BCC block check character is generated by an Exclusive-OR function over all
characters between “C1” and “ETX” in the first “standard addressing” case,
between “!” and “ETX” in the second “extended addressing” case (“C1”, ”!”, “ETX”
included).

Serial Protocol I_E 1.0.odt 4 – Writing to registers 23 / 32

Serial Communication Protocol

In case of correct transmission of the above protocol, the unit will respond with
“ACK” (Hex 06).
In case of any error, the unit will just respond with “NAK” (Hex 15).

NOTE
Data entered via serial transmission will be always stored in a temporary buffer
register first and will not affect the current operation. To make them active and
operational, then you must send the ACTIVATE DATA command.
This procedure is intended to allow the operator to enter a complete new set of
parameters in the background of the unit without bearing on the production in
process and to activate all the parameters at the same time by sending one
single command.

4.3 Remarks about the registers organization

At any parameters read-out you will read the current operational data from the
RAM. Parameters that have been stored in the buffer memory only and not yet
activated cannot be read via serial request.
When the power is turned on, the unit automatically transfers the EEProm data
to the RAM register. Serial register alteration carried out previously will be lost,
unless it has been activated before and then stored to the EEProm.

Serial Protocol I_E 1.0.odt 4 – Writing to registers 24 / 32

Serial Communication Protocol

5 – Sending the control commands

The same transmission protocol described in the previous sections is used also to
send all control commands. However, the data string XXX uses one only
character which is “1” when you need to switch the function ON and “0” when
you need to switch it OFF again. Some of the serial commands will automatically
reset to zero upon execution of the corresponding commands (such as ACTIVATE
DATA or RESTORE TO EEPROM commands). Other commands (such as RESET,
START/STOP, TRIM commands etc.) need to be set and even reset by using the
same serial command.
For a complete list of the applicable command codes, please refer to the “User's
manual” of the relevant unit.
All serial transmissions of a control command will get the same result as you get
when you set the appropriate hardware input to “HIGH” logic level.

WARNING
There is a logical “OR” condition relating all hardware control inputs and their
corresponding serial command flags. For this reason, it is compulsory to have
both the hardware input and the serial command set to OFF at the same time
when you need to switch the command OFF!
If, for instance, the RESET flag has been set to “1” via serial communication
(RESET command is ON), the unit will be in its RESET state independently of the
logical level of the hardware reset input. Thus the unit is in its normal operative
state only when both the RESET serial flag is set to “0” and the RESET input has
LOW logic level.
When the power is turned on, all serial command flags will be set to “0”
automatically.

Serial Protocol I_E 1.0.odt 5 – Sending the control commands 25 / 32

Serial Communication Protocol

6 – Practical examples

6.1 Some practical examples of how the protocol works

The following example is intended to describe how to set a new value next to
the Y register and send it to the Z unit.
Z unit uses a standard addressing for register access. Should you use a unit with
extended addressing, the following example is still completely valid except the
extended version of the address codes and the subcodes.
In the example the Z unit has serial unit address “11”, while Y register uses the
serial access code “00”. You need to set the register to the value “0.9873”.

6.1.1 Transmission of the data string

First of all, you must transmit the following data string consisting of totally 13
ASCII characters.

No. Expression ASCII Hex
Binary code

Comment
Hi----------- -----------Lo

01 EOT EOT 0 4 0 0 0 0 0 1 0 0 Control character initialization

02 AD1 1 3 1 0 0 1 1 0 0 0 1 Address, High byte

03 AD2 1 3 1 0 0 1 1 0 0 0 1 Address, Low byte

04 STX STX 0 2 0 0 0 0 0 0 1 0 Control character

05 C1 0 3 0 0 0 1 1 0 0 0 0 Register code, High byte

06 C2 0 3 0 0 0 1 1 0 0 0 0 Register code, Low byte

07 X (data) 0 3 0 0 0 1 1 0 0 0 0 Factor, Highest digit

08 X (data) 9 3 9 0 0 1 1 1 0 0 1

09 X (data) 8 3 8 0 0 1 1 1 0 0 0

10 X (data) 7 3 7 0 0 1 1 0 1 1 1

11 X (data) 3 3 3 0 0 1 1 0 0 1 1 Factor, Lowest digit

12 ETX ETX 0 3 0 0 0 0 0 0 1 1 Control character

13 BCC 6 3 6 0 0 1 1 0 1 1 0 Block check character

Characters on a grey background are used to form the Block check character by
means of an Exclusive-OR function. Now consider each of the 8 columns in
the Binary code field.
In the HIGH BIT column (first column on the left in the Binary code field), you
can find only zeros in all rows of the column, therefore the Exclusive-OR
function value will result “0” and the High bit of the Block check character will
be “0” in this column.
In the LOW BIT column (last column on the right in the Binary code field), you
find the following sequence (from top -C1- to bottom -ETX-): 0 – 0 – 0 – 1 – 0 –

Serial Protocol I_E 1.0.odt 6 – Practical examples 26 / 32

Serial Communication Protocol

1 – 1 – 1. Also in this case the Exclusive-OR function value is “0”, therefore the
Low bit of the Block check character will be “0” in this column.
Thus we can state the following rule:

• when the number of “1” values in a column is even, the Block check bit
must be “0” in the relevant column;

• otherwise, when the number of “1” values in a column is odd, the Block
check bit must be “1” in the relevant column.

In the example above, the eight bits in the Block check character row are as
follows: 0 – 0 – 1 – 1 – 0 – 1 – 1 – 0. “0011 0110” binary value corresponds
to “36” in hexadecimal notation and to “6” in ASCII character.

6.1.2 Waiting for acknowledgement

After correct transmission, the unit will acknowledge by responding “ACK” (“06”
in hexadecimal notation, “0000 0110” in binary notation).
Should the unit respond sending “NAK” (“15” in hexadecimal notation), then
this means that the transmission has been aborted because of an error such as a
wrong BCC or an incorrect sequence of characters etc.
If the unit does not send back any response, this means that the transmission
string is incomplete or the basic serial settings such as Baud rate or Data format
are wrong.

6.1.3 Transmitting further parameters

Now we can transmit any further parameters as needed without affecting the
machine processes.

Serial Protocol I_E 1.0.odt 6 – Practical examples 27 / 32

Serial Communication Protocol

6.1.4 Activating entered data

After all desired parameters have been sent successfully, we must activate the
new settings to make them effective and operational. In the following example
the Z unit has serial unit address “11”; we must write value “1” into the
ACTIVATE DATA register having code “67” (C1 = 6; C2 = 7). Then we must send
the following string:

No. Expression ASCII Hex
Binary code

Comment
Hi----------- -----------Lo

01 EOT EOT 0 4 0 0 0 0 0 1 0 0 Control character initialization

02 AD1 1 3 1 0 0 1 1 0 0 0 1 Address, High byte

03 AD2 1 3 1 0 0 1 1 0 0 0 1 Address, Low byte

04 STX STX 0 2 0 0 0 0 0 0 1 0 Control character

05 C1 6 3 6 0 0 1 1 0 1 1 0 Register code, High byte

06 C2 7 3 7 0 0 1 1 0 1 1 1 Register code, Low byte

07 X (data) 1 3 1 0 0 1 1 0 0 0 1 Activation command ON

08 ETX ETX 0 3 0 0 0 0 0 0 1 1 Control character

09 BCC 3 3 3 0 0 1 1 0 0 1 1 Block check character

6.1.5 Saving data to EEProm

This operation is optional. If you do not send this command, the unit will use all
data which has been transmitted and activated until it will be switched off.
When you switch the unit on again, data will be uploaded from the EEProm.
The serial register code of the STORE command is “68” (C1 = 6; C2 = 8). Data
value must be set to “1” to make the command operational (ON).

WARNING
The EEProm memory chip life time is limited to a total number of about 100,000
storage cycles. After this, saved data might be lost.

Serial Protocol I_E 1.0.odt 6 – Practical examples 28 / 32

Serial Communication Protocol

7 - ASCII code chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 space ! “ # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

The number of the row plus the number of the column are the hexadecimal
code of each ASCII character.
For example: @ = row no. 4 + column no. 0; the hexadecimal code of character
@ is 40.

Serial Protocol I_E 1.0.odt 7 - ASCII code chart 29 / 32

This page intentionally left blank

This page intentionally left blank

Document release Description
1.0 1st issue

Lika Electronic
Via S. Lorenzo, 25 - 36010 Carrè (VI) - Italy

Tel. +39 0445 806600
Fax +39 0445 806699

Italy: eMail info@lika.it - www.lika.it
World: eMail info@lika.biz - www.lika.biz

http://www.lika.biz/
http://www.lika.it/

	Manuale d'uso
	1 – Indirizzo dell'unità
	2 – Codici di accesso seriali
	3 – Lettura dei registri
	3.1 Lettura dei codici di registro standard
	3.2 Lettura dei codici di registro estesi
	3.3 Esempi di indirizzamento
	3.3.1 Esempio 1: indirizzamento standard
	3.3.2 Esempio 2: indirizzamento esteso

	3.4 Risposta a una richiesta valida
	3.4.1 Risposta a un indirizzamento standard valido
	3.4.2 Risposta a un indirizzamento esteso valido

	3.5 Risposta a una richiesta non valida
	3.5.1 Risposta a un indirizzamento standard non valido
	3.5.2 Risposta a un indirizzamento esteso non valido

	4 – Scrittura dei registri
	4.1 Scrittura dei codici di registro standard
	4.2 Scrittura dei codici di registro estesi
	4.3 Alcune informazioni sull'organizzazione dei registri

	5 – Invio dei comandi di controllo
	6 – Alcuni esempi di utilizzo
	6.1 Alcuni esempi pratici sul funzionamento del protocollo
	6.1.1 Trasmissione del telegramma
	6.1.2 Acknowledgement
	6.1.3 Trasmissione di ulteriori parametri
	6.1.4 Attivazione dei valori impostati
	6.1.5 Salvataggio dei dati nella EEProm

	7 - Tabella codici ASCII

	User's manual
	1 – Unit address
	2 – Serial Access Codes
	3 – Reading from registers
	3.1 Reading standard register codes
	3.2 Reading extended register codes
	3.3 Addressing examples
	3.3.1 Example 1: standard addressing
	3.3.2 Example 2: extended addressing

	3.4 Response to a valid request
	3.4.1 Response to a valid standard addressing
	3.4.2 Response to a valid extended addressing

	3.5 Response to an invalid request
	3.5.1 Response to an invalid standard addressing
	3.5.2 Response to an invalid extended addressing

	4 – Writing to registers
	4.1 Writing standard register codes
	4.2 Writing extended register codes
	4.3 Remarks about the registers organization

	5 – Sending the control commands
	6 – Practical examples
	6.1 Some practical examples of how the protocol works
	6.1.1 Transmission of the data string
	6.1.2 Waiting for acknowledgement
	6.1.3 Transmitting further parameters
	6.1.4 Activating entered data
	6.1.5 Saving data to EEProm

	7 - ASCII code chart

